General thermal requirements
The First Law of Thermodynamics is the low of conservation of energy. The second law states that heat flows form hotter body to a cooler body. The easiest way to conserve energy would be to accept a lower temperature inside in winter and a higher temperature in summer. People should be encouraged to wear warmer clothes in winter to safe on heating costs. Cooling costs in summer could be reduce by accepting an inside temperature adjusted to the outside temperature. If we accept a temperature range from 22°C to 26°C related to the outside temperature the cooling cost would be much less. Conductivity and thermal resistanceAs show in Figure 1 heat will flow through a building material until equilibrium is reached (Law of Thermodynamics). The heat travels trough the material by conductivity. The thermal conductance (C) is measured in W/m²×°C. ![]() Figure 1 [top] Thermal conductanceThe thermal conductance
is the time rate of heat flow through a material of a given thickness
per unit temperature gradient across the material. Also known as Heat
Transfer Coefficient.
[top] Thermal conductivity Very similar
to, and often confused with, Conductance as described above. The difference
to be noted is that Conductance involves area while Conductivity involves
length. For most building
materials you will find standard figures that enables you to calculate
an R value for a given thickness. The thermal conductivity
is also known as the k-value (or as SI unit
![]() Approximate k-values
in W / m °C of the thermal conductivity's of some substances are shown
in Table 1
Table 1*
and vary; depending on the source.) [top] Thermal resistanceThermal resistance
(R) is the reciprocal of thermal conductance. It is a measure of the resistance
to heat transmission across a material, or a structure.
The "R value"
of a wall or an insulating material is its resistance to the flow of heat
energy. The higher the R-value, the higher the energy efficiency. The
R-value is the reciprocal of the U-value
Thermal conductivity
figures refer always to one metre thickness of a specific building material.
To calculate the R-value of a particular material we must divide the thickness
of the material by the k-value. The thermal resistance
(R) of single layer is calculated by dividing the layer thickness (s)
by the k-value:
![]() s = thickness in metres | k = thermal conductivity
|
|
The fo
and fi in the above equation stand for external and internal
surface resistance. This air film accounts for the effects of the convective
and radiative components of the heat exchange at the surface. The inside
air film layer (fi) is considered to be still air and the outside
layer (fo)is considered to be moving air. Typical normal figures
are:
fo = 0.4 to 0.6 fi = 0.12 to 0.15 Please note that
the American publication give R-values in imperial units. To convert the
American units in metric unit you must multiply them by 0.176 or divide
our R-values by 0.176 to compare them with the American figures. (e.g.
American R 8 is R 1.4 in metric units)
Remember that
the unit for the material thickness must be in metre.
The diagrams above are vertical slices through exterior walls. Figure 3 (b) shows how the position of the external insulation helps to keep the wall structure and interior surfaces warm. The range of the outdoor air temperature in (a) and (b) is 45°C (-5°C Winter and +40°C Summer) and the indoor air temperature is kept constant at 20°C (Summer and Winter). The thick solid diagonal lines show the temperature within the wall at various points. Note the warmth of the wall structure in (b); it's the external insulation at work. The inside surface
of the wall is nearer to the temperature of the inside air. Thus, the
building's occupants do not gain or lose heat as readily by being near
surfaces that are hotter or colder than the indoor air. (Keeping the wall
warm also has the advantage of keeping water pipes in the wall from freezing
in the winter.)
Figure 3 also indicates that with
an external yearly temperature range of 45° (-5°C Winter
and 40°C Summer) the thermal stress in the material
(a) is extreme compared to (b) and of course for (a) much more energy is
needed to maintain a comfortable internal surface temperature throughout
the year.
[top] |